Characterization of the self-cleaving effector protein NopE1 of Bradyrhizobium japonicum.

نویسندگان

  • Jana Schirrmeister
  • Lars Friedrich
  • Mandy Wenzel
  • Markus Hoppe
  • Christine Wolf
  • Michael Göttfert
  • Susanne Zehner
چکیده

NopE1 is a type III-secreted protein of the symbiont Bradyrhizobium japonicum which is expressed in nodules. In vitro it exhibits self-cleavage in a duplicated domain of unknown function (DUF1521) but only in the presence of calcium. Here we show that either domain is self-sufficient for cleavage. An exchange of the aspartic acid residue at the cleavage site with asparagine prevented cleavage; however, cleavage was still observed with glutamic acid at the same position, indicating that a negative charge at the cleavage site is sufficient. Close to each cleavage site, an EF-hand-like motif is present. A replacement of one of the conserved aspartic acid residues with alanine prevented cleavage at the neighboring site. Except for EDTA, none of several protease inhibitors blocked cleavage, suggesting that a known protease-like mechanism is not involved in the reaction. In line with this, the reaction takes place within a broad pH and temperature range. Interestingly, magnesium, manganese, and several other divalent cations did not induce cleavage, indicating a highly specific calcium-binding site. Based on results obtained by blue-native gel electrophoresis, it is likely that the uncleaved protein forms a dimer and that the fragments of the cleaved protein oligomerize. A database search reveals that the DUF1521 domain is present in proteins encoded by Burkholderia phytofirmans PsNJ (a plant growth-promoting betaproteobacterium) and Vibrio coralliilyticus ATCC BAA450 (a pathogenic gammaproteobacterium). Obviously, this domain is more widespread in proteobacteria, and it might contribute to the interaction with hosts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Probe Designing for Evaluation of the Diversity of Bradyrhizobium japonicum Isolates

Many researchers consider the use of different probes for hybridization assays as suitable for studying the genetic diversity of nitrogen fixing bacteria. In this study for asessing genetic diversity among Bradyrhizobium japonicum isolates, two different probes (sucA and topA) chosen from the chromosomal genome of Bradyrhizobium strain USDA 110 were designed, evaluated by DNAMAN software and im...

متن کامل

A Putative Type III Secretion System Effector Encoded by the MA20_12780 Gene in Bradyrhizobium japonicum Is-34 Causes Incompatibility with Rj4 Genotype Soybeans.

The nodulation of Bradyrhizobium japonicum Is-34 is restricted by Rj4 genotype soybeans (Glycine max). To identify the genes responsible for this incompatibility, Tn5 mutants of B. japonicum Is-34 that were able to overcome this nodulation restriction were obtained. Analysis of the Tn5 mutants revealed that Tn5 was inserted into a region containing the MA20_12780 gene. In addition, direct disru...

متن کامل

The type III Secretion System of Bradyrhizobium japonicum USDA122 mediates symbiotic incompatibility with Rj2 soybean plants.

The rhcJ and ttsI mutants of Bradyrhizobium japonicum USDA122 for the type III protein secretion system (T3SS) failed to secrete typical effector proteins and gained the ability to nodulate Rj2 soybean plants (Hardee), which are symbiotically incompatible with wild-type USDA122. This suggests that effectors secreted via the T3SS trigger incompatibility between these two partners.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 193 15  شماره 

صفحات  -

تاریخ انتشار 2011